A Well-Posed Semi-Discretization of Elastodynamic Contact Problems with Friction
نویسندگان
چکیده
منابع مشابه
Comparison of two approaches for the discretization of elastodynamic contact problems
The purpose of this Note is to compare two approaches for the discretization of elastodynamic contact problems. First, we introduce an energy conserving method based on a standard midpoint scheme and a contact condition expressed in terms of velocity. The second approach consists in considering an equivalent distribution of the body mass so that the nodes on the contact boundary have no inertia...
متن کاملDiscrete Contact Problems with Coulomb Friction
The paper deals with a discrete model of a two-dimensional Signorini problem with Coulomb friction and a coefficient of friction F depending on the spatial variable. It is shown that a solution exists for any F and is unique if F is sufficiently small. We also prove that this unique solution is a Lipschitz continuous function of F . Numerical realization is done by the piecewise smooth Newton m...
متن کاملWell-posed Infinite Horizon Variational Problems
We give an effective sufficient condition for a variational problem with infinite horizon on a Riemannian manifold M to admit a smooth optimal synthesis, i. e. a smooth dynamical system on M whose positive semi-trajectories are solutions to the problem. To realize the synthesis we construct a well-projected to M invariant Lagrange submanifold of the extremals’ flow in the cotangent bundle T ∗M ...
متن کاملQuasireversibility Methods for Non-well-posed Problems
The nal value problem, ut + Au = 0 ; 0 < t < T u(T) = f with positive self-adjoint unbounded A is known to be ill-posed. One approach to dealing with this has been the method of quasireversibility, where the operator is perturbed to obtain a well-posed problem which approximates the original problem. In this work, we will use a quasi-boundary-value method, where we perturb the nal condition to ...
متن کاملA domain decomposition algorithm for contact problems with Coulomb’s friction
Contact problems of elasticity are used in many fields of science and engineering, especially in structural mechanics, geology and biomecanics. Many numerical procedures solving contact problems have been proposed in the engineering literature. They are based on standard discretization techniques for partial differential equations in combination with a special implementation of non-linear conta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Quarterly Journal of Mechanics and Applied Mathematics
سال: 2011
ISSN: 0033-5614,1464-3855
DOI: 10.1093/qjmam/hbr004